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1.  INTRODUCTION 
 
 This project, funded under Contract No F42620-00-D-0039, Delivery Order 
RZ16, evaluated the Portable Laser Coating Removal System (PLCRS) mechanical 
property tests results compared to the published data of other coating removal systems 
used by the Department of Defense (DoD).  This document was submitted to the Air 
Force Research Laboratory Materials Laboratory (AFRL/ML).  The technical points of 
contacts at AFRL/MLSC were Mr. Randall Straw and Mr. Thomas Naguy. The Principal 
Investigators at the University of Dayton Research Institute were Mr. James Coleman and 
Dr. Peter Sjöblom.  
 
 
2.  BACKGROUND 
 

The processes used to remove coatings from DoD equipment vary from chemical, 
mechanical, and high intensity light stripping, to hand sanding and scraping.  The 
substrates primarily used on DoD equipment are metallic and composite materials.  The 
Environmental Protection Agency (EPA) requires that the use of hazardous chemicals 
and materials is held to a minimum.  This requirement limits the chemical and 
mechanical coating removal methods that can release volatile organic compounds 
(VOCs) and hazardous air pollutants (HAPs) and can produce hazardous waste.  The 
DoD is searching for an environmentally friendly paint removal method to satisfy the 
environment requirements without decreasing the performance of the substrate material.  
 
 
3.  LITERATURE SURVEY AND DATA COMPARISON 
 

A literature search of 74 published references was conducted on methods 
commonly used to remove paint from metallic and non-metallic substrates.  The 
references were categorized by substrate and mechanical property data presented.  
Metallic substrate mechanical properties retrieved from the references were tensile, 
fatigue, and hardness. No fatigue crack growth data was found in the literature survey.  
Therefore, no comparison to the data generated in the Portable Laser Coating Removal 
System (PLCRS) program could be made. The nonmetallic substrate mechanical property 
commonly found in the literature was flexure strength.  The paint removal methods 
examined were flash lamp, plastic media blasting (PMB), dry media blasting (DMB), 
chemical, and lasers.  A catalog was created to assist in categorizing the large number of 
references (Appendix A).   

 
The data gathered were compared to the test results from the (PLCRS) program.  

Statistical analysis was performed on the test results from the PLCRS program and 
compared to the literature search data gathered using the same statistical analysis 
approach when possible.  The statistical analysis criterion was established by the 
Engineering and Technical Services for Joint Group on Pollution Prevention Projects 
Joint Test Protocol J-00-CR-017 (JTP).  The JTP is designed to set the standard for 
acceptable mechanical tests results used to qualify materials for use in the field. 
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The paint-removed test results were compared to the baseline test results.  The evaluation 
process consisted of a statistical analysis of the baseline test results compared to the 
paint-removed test results in each reference, where sufficiently detailed data were 
available, as well as from the PLCRS project. 
 
4.  STATISTICAL ANALYSIS 
 

Statistical analysis was performed on the selected JTP test data.  Confidence 
intervals were constructed at a 90% confidence level for the difference between baselines 
and de-paint treated specimens.  The analyses produces an estimate of the difference 
between the baseline mean value and the de-paint method mean using calculated 
confidence intervals (CI) of 90%.  A statistical significance is present if the 90% CI is 
completely positive or negative.  A 90% CI straddled across zero represents no statistical 
significance.   

 
The 90% CI calculations were completed using the (SAS) software package.  This 

software is a widely accepted statistical software package used by statisticians.  A 
reference to the exact methodology used can be found on page 941 of SAS/STAT Users 
Guide Volume 2, GLM-VARCOMP Version 6 Fourth Edition.  
 
5.  METALLIC LITERATURE SEARCH RESULTS 
 
 The primary focus of the metallic substrate literature search was on paint removal 
testing conducted on aluminum substrates used by the DoD.  The JTP requires that four 
paint removal cycles be performed on the substrate before any mechanical test data is 
generated.  Aluminum 2024-T3 (clad, bare) and 7075-T6 (clad, bare) were the materials 
selected for the PLCRS project so the data reference search was concentrated on those 
materials.   
 
5.1  Tensile Results 
 

The PLCRS and reference data tension results are displayed in Fig. 1.  Each 
baseline and paint removal method was evaluated using at least ten replicates.  The 
average tensile ultimate strength (TUS), tensile yield strength (TYS), and elongation (e) 
are represented in the graphs.  The baseline data for the PLCRS and the reference data are 
the firs bar, plotted in black, in each data set.  The bars right of the baseline are the test 
results after paint removal. Each bar is labeled with the removal method used.  The 
reference from which the data was collected is displayed over the plot.   
 

A statistically significant difference between the baseline and after paint removal 
is indicated by a ‘√’ mark. A data set without a ‘√ ‘mark indicates no statistical 
significance between the baseline and after the paint removal.  The Metallic Materials 
Properties Development and Standardization (MMPDS) Handbook ‘A’ allowable level is 
also indicated on the charts, where applicable.  Although, one cannot direct compare an A 
design allowable, statistically derived from 300 test results from 10 different lots, to a 
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mean of a handful of tests, the A allowable for the material form used is plotted in the 
graphs to give an indication of the relative strength level of the stripped panels. 
 
 The Al 2024-T3 bare material tension results are displayed in Figures 1, 2, and 3.  
The tension results (plots) for the remaining materials are located in Appendix B.   
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Figure 1.  2024-T3 Bare Average TUS. 

 

PLCRS and Reference Data
   Average Yield Tensile Strength Results, 2024-T3 Bare
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Figure 2.  2024-T3 Bare Average TYS. 
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PLCRS and Reference Data
   Average Percentage of Elongation Results, 2024-T3 Bare
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Figure 3.  2024-T3 Bare Average Elongation. 
 
5.1.1   2024-T3 Bare 
 
 The paint removal method used in reference (2) was a dry media blast (DMB) 
while reference (1) and (3) use different lasers for removing paint from the substrate. 
 
 Strength: The PLCRS tensile properties for Al 2024-T3 bare show a statistically 
significant increase in ultimate strength compared to the baseline.  The same trend can 
not be found in the reference data.  The reference data either depicts a statistically 
significant decrease, as in reference (3), or no difference as in reference (1) and (2).  
Reference (2) has a statistical decrease in yield strength. 
 
 Percentage of Elongation: The percentage of elongation data from the PLCRS and 
reference (3) displays a statistically significant decrease when compared to the baselines 
used in their respective testing.  There was no statistical significance difference for the 
elongation in the reference (1) results.  Reference (2) shows a statistical increase in 
elongation. 
 
  
5.1.2  2024-T3 Clad 
 
 Strength: The Al 2024-T3 clad tests results (Figures B1 thru B3 in Appendix B) 
display a statistically significant increase in TUS for the PLCRS Nd YAG lasers (Clean 
and Quantel) results; however, there is a statistically significant decrease in strength for 
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the carbon dioxide (CO2) laser results.  A statistically significant decrease in TYS was 
seen in the PLCRS CO2 laser and DMB (2) paint removal methods.  The yield strength 
variation for the other paint removal methods was not statistically significant. 
 
 Percentage of Elongation: The elongation for the PLCRS CO2 and Nd YAG 
(Quantel) laser and DMB method show statistical difference compared to the baseline 
data.  The PLCRS Nd YAG (Cleanlaser) elongation is statistically significant lower than 
the baseline data. 
 
  
5.1.3  7075-T6 Bare 
 
 Strength: The Al 7075-T6 bare tests results (Figures B4 to B6 in Appendix B) 
show a statistically significant increase in TUS for the PLCRS CO2 and Nd YAG 
(Quantel) laser paint removal methods and a decrease in TUS for the DMB data in 
reference (2).  No difference in TUS using in the PLCRS Nd YAG (Cleanlaser) strength 
results was observed.  The PLCRS laser TYS results show no statistical difference.  The 
DMB (2) yield strength results show a statistical decrease compared to baseline data. 
 
 Percentage of Elongation: No statistical significant difference was noted. 
  
  
5.1.4  7075-T6 Clad 
 
 Strength: The Al7075-T6 clad test results (Figures B7 to B9 in Appendix B) 
display an increase in the TUS for the PLCRS laser paint removal methods and a 
statistical decrease in the DMB (2) paint removal method.  The TYS, using PLCRS 
lasers, did not change, but the DMB paint removal method produced a decrease. 
 
 Percentage of Elongation: The elongation results displayed no difference for the 
PLCRS CO2 and Nd YAG (Quantel) laser and DMB (2) paint removal methods.  The Nd 
YAG (Cleanlaser) laser paint removal method produced a decrease in elongation. 
 
 
5.1.5  Summary 
 
 A summary of the PLCRS tensile results and the reference data is shown in Table 
1.  The space marked “+” indicates a statistically significant increase in the property, 
while “-” indicates a decrease.  It should be noted, that although there may be a 
statistically significant difference at the 90% confidence level, there may not be a 
significant engineering difference.  The differences observed are small and well within 
the expected scatter in material properties.  This scatter has been accounted for in the 
design of the aircraft and should not be cause for alarm.  It should also be noted that the 
Laser Stripping Methods showed a lesser, if any, reduction of tensile properties.  The 
Laser Stripping Methods tensile properties are above the MMPDS ‘A’ allowable.  
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Table 1.  Tensile Properties for Various Paint Stripping Methods 
Al 2024-T3 bare Al 2024-T3 clad Al 7075-T6 bare Al 7075-T6 clad Paint Removal 

Methods Tension Tension Tension Tension 
Reference UTS YTS %E UTS YTS %E UTS YTS %E UTS YTS %E 
(2), DMB 
(wheat starch)  - - NS - - NS - - NS - - NS 

(3), Plasma 
Etching  - NS -          

(3), Excimer  - NS -          
(1), (3), CO2 
Laser  + NS +          

(3), Nd YAG  - NS -          
PLCRS  
CO2 + NS NS - - NS + NS NS + NS NS 
Nd YAG (Q) + NS NS + NS NS + NS NS + NS NS 
Nd YAG (C) + NS - + NS - NS NS NS + NS - 
NS – No Statistically Significant Difference 
- - Statistically Significant Decrease 
+ - Statistically Significant Increase 
 - No tabulated reference data found  

 
 
5.2  Fatigue Results 
 
 An important point to consider when viewing any fatigue data is the inherent 
scatter in fatigue life for any material and condition.  Depending on the stress level, 
normal scatter in the fatigue life of metallic materials can easily range over a decade in 
cyclic life, witnessed in the numerous fatigue publications such as the MMPDS 
handbook.  Differences in fatigue life of 20% are well within the norm, particularly when 
fatigue stresses approach the endurance strength of the material.  In general, fatigue data 
is assumed to follow a log-normal distribution and therefore plotted and analyzed in 
terms of the log cycles.  Thus, differences in cyclic lives of 20% and perhaps even 50%-
60%, while statistically significant, may not be as significant from an engineering 
standpoint.  Such debits or variability in fatigue life are generally design specific and best 
left to the design engineer to ascertain whether slight decreases in life are significant from 
an engineering standpoint. 
 

The PLCRS and the reference fatigue data are displayed as bar charts in Figures 4 
and 5.  The average cycles-to-failure of at least five replicates for each baseline and paint 
removal method are presented in the graphs.  The brackets on each bar represent the 
observed cycles-to-failure range of the replicates tested at the given stress level.  The 
baseline data for the PLCRS and the reference data is the black bar that appear to the left 
in each plot.  The bars next to the baseline information are the paint removal test results 
labeled by the removal method.  The report reference number is displayed over the bar.  
A statistical significant difference is indicated by a ‘√’ mark.  A data set without a 
‘√‘mark indicates no statistical difference at a 90% confidence level.   
 

 The 2024-T3 clad material fatigue results are displayed in Figures 4 and 5.  The 
fatigue results for the remaining materials are located in Appendix C (Figures C1 to C3).   
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PLCRS Smooth Fatigue Results, 2024-T3 clad (0.025") 
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Figure 4. 2024-T3 Clad S-N Smooth Fatigue Results. √ indicate a statistically significant 

difference. 
 

PLCRS Notch Fatigue Results, 2024-T3 clad (0.025")
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Figure 5. 2024-T3 Clad S-N Notch Fatigue Results. √ indicate a statistical significant 

difference. 
 
5.2.1  2024-T3 Clad Smooth Fatigue 
 
 2024-T3 clad smooth fatigue results from the PLCRS program showed no 
statistically significant difference in fatigue life for the CO2 and Nd YAG (Cleanlaser) 
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laser paint removal method.  The Nd YAG (Quantel) laser paint and Chemical (reference 
(4)), and PMB NSOD (reference (5)) removal method showed a statistically significant 
decrease in fatigue life.  Data from reference (2) (DMB) and (5) (PMB) paint removal 
method displayed no statistically significant difference in fatigue life.  
 
5.2.2  2024-T3 Clad Notch Fatigue 
 
 The notch fatigue results for 2024-T3 clad from the Nd YAG (Quantel and 
Cleanlaser) paint removal method showed a statistically significant reduction in fatigue 
life.  The CO2 and flash lamp paint removal method (reference (6)) showed no 
statistically significant difference in fatigue life. 
 
5.2.3  7075-T6 Bare Smooth Fatigue 
 
 The 7075-T6 bare smooth fatigue results (Figure C1 in Appendix C) for the CO2 
laser and DMB paint removal methods showed no statistically significant change in 
fatigue life.  The Nd YAG (Quantel and Cleanlaser) laser paint removal method and 
chemical paint removal method resulted in a statistically significant shorter fatigue life.   
 
5.2.4  7075-T6 Bare Notch Fatigue 
 
 7075-T6 bare notch fatigue results (Figure C4 in Appendix C) for the PLCRS 
project show a statistically significant decrease in fatigue life for the CO2 and Nd YAG 
(Quantel and Cleanlaser) laser paint removal methods.  No tabulated data was found for 
7075-T6 bare notch fatigue in the reference data reports. 
 
5.2.5  7075-T6 Clad Smooth Fatigue 
 
 7075-T6 clad smooth fatigue results (Figure C3 in Appendix C) showed no 
statistically significant change in fatigue life for the PLCRS lasers and PMB. Chemical 
strip and DMB showed a statistically significant decrease in fatigue life. 
 
5.2.6  7075-T6 Clad Notch Fatigue 

 
The notch fatigue results for 7075-T6 clad for the Nd YAG (Cleanlaser and 

Quantel) paint removal method showed a statistically significant reduction in fatigue life.  
The CO2 and flash lamp paint removal method (reference (6)) showed no statistically 
significant difference in fatigue life. 

 
5.2.7  Summary 
 
 A qualitative summary of the PLCRS fatigue results and the reference data is 
listed in Table 2.  The space marked “+” indicates a statistically significant increase, 
while “-” indicates a statistically significant decrease. Note that all differences fall well 
within the normal scatter in fatigue life, approximately one decade. Therefore, the 
differences are not significant from an engineering standpoint.  
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Table 2.  Fatigue Properties 

Paint Removal 
Methods 

 
2024-T3 Clad 

 
7075-T6 Bare 

 
7075-T6 Clad 

Reference Smooth Notch Smooth Notch Smooth Notch 
(4), Chemical -  -  -  
(2),DMB (Wheat 
Starch) -    -  

(5), PMB 
(Plastic) -    NS  

(6), Flash lamp  NS  +  + 
PLCRS  
CO2 NS NS + - NS NS 
Nd YAG (Q) - - - - NS - 
Nd YAG  (C) NS - - - NS - 
NS – No Statistically Significant Difference 
- Statistically Significant Decrease 
+ Statistically Significant Increase 
 - No tabulated reference data found 

 
5.3 Fatigue Crack Growth Rate (FCGR) Testing 
 
 Fatigue crack growth rate (FCGR) data aid in determining the life of a component 
containing cracks, as well as determining inspection intervals for the component.  If crack 
growth rates are increased significantly by a process such as paint removal, the inspection 
interval may have to be reduced, leading to more frequent inspections.  However, if crack 
growth rates are not significantly affected, the original inspection intervals are 
presumably still appropriate.  As the crack length increases during fatigue cycling, the 
rate of crack propagation increases (change in crack length/ change in fatigue cycles, or 
da/dN) due to an increase in the range of stress intensity factor, ΔK, which is a function 
of both crack length and stress amplitude. The magnitude of ΔK (units of ksi√in) controls 
the rate of crack propagation and, with the knowledge of the expected fatigue loading and 
material properties, one can estimate the life of a cracked structure.   

 
The plot in Figure 6 represents typical FCGR data.  This sigmoidal shaped curve 

has three distinct regions: Region 1 (threshold), Region 2 (linear or ‘power law’ region), 
and Region 3 (onset of fast fracture).  The linear relationship between the logarithm of 
da/dN and the logarithm of the stress intensity range is generally modeled as a power fit 
to the actual data and also termed the “Paris Region” after the researcher who first 
identified this relationship.  Data which falls above the curve in Figure 6 indicates a 
higher crack propagation rate and thus identified as ‘Decreased Life’.  Conversely, data 
falling below and to the right of the idealized curve would be have lower propagation 
rates and thus result in ‘Increased Life’. 
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Figure 6. Example Plot of FCGR Data. 

 
 
This effort evaluated the effect of the various laser paint removal processes on the 

crack growth rate of the metallic substrates along with baseline (un-stripped) samples.  
Each baseline and paint removal method had at least four replicates.  An example of this 
for the 2024-T3 substrate is shown in Figure 7.  Data for all substrates are further 
illustrated in Figures D1 to D4 in Appendix D.   
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Figure 7.  7075-T6 Clad Fatigue Crack Growth Rate Test Results. 
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5.3.1  FCGR Statistical Analysis 
 
 Since any reference FCGR data could not be found in a tabulated format, it is 
impossible to compare reference paint removal methods with the PLCRS data.  The 
statistical analysis performed on the PLCRS data was accomplished by first modeling the 
Paris region for each removal technique and substrate and examining the statistical 
variation in growth rates at a 90% confidence level at two distinct ΔK values: 6 and 14 
ksi√in.   Table 3 shows the results of this statistical analysis for all of the FCGR tests 
performed in the PLCRS project.  The results of this analysis are further depicted 
graphically in Figure 8, where the Paris model is shown along with the ± 90% confidence 
levels.  When the confidence levels of a particular data set fall below the baseline curve, a 
statistically significant decrease in growth rate is noted, beneficially from a life 
standpoint.  Further more, when the confidence intervals are above the baseline, there is a 
statistical increase in growth rates which corresponds to a decrease in fatigue crack 
growth life.  When the confidence intervals of two data sets overlap, no statistical 
differences are noted.   For the 7075-T6 clad data represented in Figure 8, all the paint 
strip data at 6 ksi√in fall below the baseline, indicating lower growth rates.  At 14 ksi√in, 
no statistical differences are noted between the stripped data and the baseline with the 
exception of the Nd YAG (Q) which is statistically lower than baseline.  
 

Reviewing the data shown in Table 3 indicates that from a statistical standpoint, 
only the 2024-T3 clad data showed a decrease in growth rate resistance (i.e., higher 
growth rates) over baseline material.   The significance of this difference (and all 
differences) noted in Table 3 from an engineering standpoint is discussed in the following 
section. 

 
5.3.2  FCGR Data Analysis using ASTM E647 
 
 It is not unusual for FCGR data to show a large amount of specimen- to-specimen 
variability. ASTM E 647-00, Standard Test Method for Measurement of Fatigue Crack 
Growth Rates1, in Section 8.1 states that:  
 

At crack growth rates greater than 10-8 m/cycle, the within-lot variability (neighboring 
specimens) of da/dN at a given ΔK typically can cover about a factor of two. At rates below 10-8 
m/cycle, the variability in da/dN may increase to about a factor of five or more due to increased 
sensitivity of da/dN to small variations in ΔK. This scatter may be increased further by variables 
such a micro structural difference, residual stresses, changes in crack tip geometry (crack 
branching) or near tip stress . . . 

 
Furthermore, the standard states: 
 

 … the reproducibility in da/dN within a laboratory to average ±27% and range from ±13 to 
±50%, depending on laboratory… 

                                                 
1 Section 3, Metals Test Methods and Analytical Procedures, ASTM International, West Conshohocken, 
PA. 
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Table 3. Statistical Analysis of Fatigue Crack Growth Rate Data Results for PLCRS 
 

Material Paint 
Removal 
Method 

ΔK 
ksi-

(in)0.5 

Predicted Value 
From Model 

Lower 90% 
Confidence 

Interval 

Upper 90% 
Confidence 

Interval 

Statistical 
Significance 

Predicted Value 
– Baseline 

Predicted Value 
Baseline 6 -6.163 -6.184 -6.141   

 14 -4.879 -4.906 -4.852   
Q Laser 6 -6.137 -6.146 -6.129  0.0254 

 14 -4.664 -4.676 -4.652 - 0.215 
C Laser 6 -6.126 -6.137 -6.114 - 0.0370 

 14 -4.689 -4.708 -4.670 - 0.190 
CO2 6 -6.256 -6.277 -6.235 + -0.0930 

2024-T3 Clad 

 14 -4.783 -4.813 -4.754 - 0.0961 
Baseline 6 -5.366 -5.377 -5.354   

 14 -4.339 -4.354 -4.324   
Q Laser 6 -5.484 -5.508 -5.460 + -0.118 

 14 -4.435 -4.469 -4.402 + -0.0964 
C Laser 6 -5.447 -5.473 -5.422 + -0.0818 

 14 -4.347 -4.385 -4.309 NS -0.00786 
CO2 6 -5.584 -5.615 -5.553 + -0.218 

7075-T6 Clad 

 14 -4.361 -4.411 -4.311 NS -0.0220 
Baseline 6 -5.456 -5.474 -5.439   

 14 -4.259 -4.283 -4.236   
Q Laser 6 -5.552 -5.571 -5.533 + -0.0955 

 14 -4.250 -4.279 -4.222 NS 0.00892 
C Laser 6 -5.671 -5.707 -5.634 + -0.214 

 14 -4.202 -4.255 -4.148 NS 0.0574 
CO2 6 -5.516 -5.539 -5.492 + -0.0591 

7075-T6 Bare 
 

 14 -4.244 -4.284 -4.204 NS 0.0153 
+ -Statistically significant difference where the laser FCGR data lies below the baseline 
- - Statistically significant difference where the laser FCGR data lies above the baseline 
NS No statistical significance 
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Figure 8.  Statistical Representation of FCGR data for 7075-T6 Clad. 

 
 
 
 
 Thus the statistical differences shown in Table 3 should thus be viewed with this 
in mind. The data comparisons are made at the discrete ΔK levels of 6 and 14 ksi√in. The 
corresponding levels of da/dN are in the range of 1x10-4 to 1x10-6 in/cyc. Per the ASTM 
E647 standard, differences within a factor of two to five between data sets can be 
expected due to specimen-to-specimen variability. Therefore, since the data in Table 3 
(shown as log da/dN) does not vary by more than a factor of two, differences from the 
baseline should be considered expected variability. As none of the data meet this 
criterion, there does not appear to be significant differences from an engineering 
standpoint between the baseline and FCGR data for any of the three examined substrates. 
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5.4  Superficial Hardness 

 
 The statistical analysis for the PLCRS hardness for 2024-T3 and 7075-T6 clad are 
shown in Table 4 and Figures 9 and 10.  The statistical significant difference at a 90% 
simultaneous confidence interval for each paint removal method is indicated by a ‘√’ 
mark.  A data set without a ‘√ ‘mark indicates no difference. 
 
 Both YAG lasers decreased the hardness; CO2 no change for both 7075-T6 and 
2024-T3. 

 

Table 4. Statistical Analysis of Hardness 

Paint Removal Method 2024-T3 7075-T6 
PLCRS Superficial Hardness Superficial Hardness 

Baseline 82.6 89.2 
CO2 82.1 89.5 
Nd YAG ( Q ) 81.5 88.1  
Nd YAG ( C ) 80.9 88.7 
 
 

PLCRS Superficial Hardness Results, 7075-T6
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Figure 9.  7075-T6 Clad Superficial Hardness Results. 
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PLCRS Superifical  Hardness Results, 2024-T3
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Figure 10.  2024-T3 Superficial Hardness Results. √ indicate a statistical difference at a 

90% confidence level. 
 
 
5.5  Conclusions/Observations 
 
 Table 5 summarizes the effects of the paint removal methods on the mechanical 
properties of the metallic substrates.  No conclusive data depict one paint removal 
method to be better or worse than the others.  The statistical significance presented may 
not represent an engineering significance.  Most of the metallic tension mean levels 
(TUS, TYS, percentage of elongation) are above the ‘A’ Allowable given in the MMPDS 
Handbook.  The most notable view from this study was how few mechanical property 
tests data were published on the past paint removal methods.   
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Table 5. Metallic Matrix for Paint Removal Methods 

UTS YTS %Elong Smooth Notched UTS YTS %Elong Smooth Notched UTS YTS %Elong Smooth Notched UTS YTS %Elong Smooth Notched
Paint Removal Methods

Chemical
(Reference (4))

PMB
(Reference (5))

DMB (Wheat-Starch)
(Reference (2))

Flash Lamp
(Reference F)

CO2 Laser
(Reference (1))

Plasma Etching
(Reference (3))

Excimer
(Reference (3))

Nd YAG Laser
(Reference (3))

CO2 Laser
(AFRL Testing)

Nd YAG (Q) Laser
(AFRL Testing)

Nd YAG ( C )  Laser
(AFRL Testing)

+ - Positive Statistical Significance against the baseline material data
NS - No Statistical Significance against the baseline material data
- -Negative Statistical Significance against the baseline material data
- Historial data not found for Statistical Analysis
- No fatigue data generated

Tensile Fatigue

Material - 2024-T3 Bare Material - 2024-T3 Clad

Tensile Fatigue

Material - 7075-T6 Clad 

Tensile Fatigue

+

-

+

NS

-

-

NS

NS

- NS

-

-

NS

NS

- NS

NS

NS

NS

NS

--

Material - 7075-T6 Bare 0.016"

Tensile Fatigue

-

- - NS NS

NS - - NS NS NS + NS NS NS NS + NS NS NS -

+ NS NS + NS NS - - + NS NS NS - + NS NS - -

NS -+ NS - - -- NS - NS NS NSNS - + NS+
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6.  COMPOSITE LITERATURE SEARCH RESULTS 
 

The primary focus of  the composite literature search was on paint removal testing 
conducted on composite substrates used by the DoD and in the PLCRS project  The JTP 
requires the substrate to be run through four paint removal cycles before any mechanical 
testing is performed on the substrate.  Graphite, fiberglass, and Kevlar epoxy were the 
materials selected for the PLCRS project, so the reference search focused on these 
materials.  The paint removal methods were PMB, high intensity light (flash lamp), and 
hand (wet/dry) abrasive. 

 
6.1 Four-Point Flexural Testing 

 
The PLCRS and the reference data flexural results are displayed in bar charts.  

Each baseline and paint removal method had at least five replicates with the average 
flexural strength represented in the graphs.  The baseline data for the PLCRS and the 
reference data are represented by the black bar that appears on the left in each data set.  
The bars next to the baseline information are the paint removal test results labeled by the 
removal method.  The reference number is displayed over the data from which it was 
extracted and corresponds to the summary chart in Appendix A.  A statistically 
significant difference in the data between the baseline and the paint removal method at a 
90% simultaneous confidence interval is indicated by a ‘√’ mark.  A data set without a ‘√ 
‘mark indicates no statistical difference.   

 
Figure 11 shows the results of the PLCRS graphite/epoxy flexural test and the 

reference data found for that material.  Graphs for the other substrates are in Appendix E.  
The Nd YAG (Cleanlaser) laser results in Figure 11 shows a decrease in flexural strength 
in comparison to the baseline data.  The reference data shows no statistical change in 
flexural except in the wet abrasive which showed an increase. 

 
Figure E1 displays the PLCRS flexural strength results for the graphite, fiberglass 

and Kevlar epoxy laminate tests.  The fiberglass results show a decrease in flexural 
strength for both Nd YAG lasers compared to the baseline.  The Kevlar results showed no 
difference between the Nd YAG lasers. 

 
Figure E2 displays the PLCRS and a PMB reference data graphite/epoxy laminate 

flexural strength results.  Only the four cycles PMB at 38 and 60 psi showed a decrease in 
strength. 
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PLCRS and Reference Data
   Flexural Strength Results,
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Figure 11.  Graphite/Epoxy Flexural Strength Results. √ indicates a statistical significant 

difference at a 90% confidence level. 
 
 
 A matrix of the PLCRS composite flexural strength results and the reference data 
is presented in Table 6.  The space marked “+” indicates an increase (at a 90% 
confidence interval) in the flexural strength, while “-” indicates a decrease. 
 
6.2  Summary 
 
 The results of tests conducted to compare paint removal methods were 
inconclusive.  The data did not depict one paint removal method to be better or worse 
than the other methods.  Any indicated statistically significant difference may not 
represent an engineering significance.  The most notable finding from this study was how 
few mechanical property tests data have been published on presented past paint removal 
methods.   
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Table 6. Matrix for Composite Flexural Data 

Paint 
Removal 
Method 

Graphite/Epoxy Fiber 
Glass/Epoxy Kevlar/Epoxy 

Reference Flexural 
Strength 

Flexural 
Strength 

Flexural 
Strength 

#H Flash 
Lamp NS   

#E PMB 
(Plastic) NS   

#G 
Bicarbonate 

Blast 
NS   

#G 
Abrasive NS   

#G Wet 
Abrasive +   

PLCRS  
Nd YAG 

(Q) NS - NS 

Nd YAG    
( C ) - - NS 

NS – No Statistical Significance 
- - Statistical decrease 
+ - Statistical increase 
 - No tabulated reference data found 
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Figure B1. PLCRS and Reference Data Metallic Al 2024-T3 Clad Ultimate Tensile Strength Results. 
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PLCRS and Reference Data
  Average Yield Tensile Strength Results, 2024-T3 Clad
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Figure B2. PLCRS and Reference Data Metallic Al2024-T3 Clad Yield Tensile Strength Results. 
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PLCRS and Reference Data
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Figure B3. PLCRS and Reference Data Metallic Al2024-T3 Clad Elongation Results. 
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PLCRS and Reference Data
    Average Ultimate Tensile Strength Results, 7075-T6 Bare
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Figure B4. PLCRS and Reference Data Metallic Al7075-T6 Bare Ultimate Tensile Strength Results. 
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PLCRS and Reference Data
     Average Yield Tensile Strength Results, 7075-T6 Bare
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Figure B5. PLCRS and Reference Data Metallic Al7075-T6 Bare Yield Tensile Strength Results. 
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PLCRS and Reference Data 
   Average Percentage of Elongation Results, 7075-T6 Bare
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Figure B6. PLCRS and Reference Data Metallic Al7075-T6 Bare Elongation Results. 
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PLCRS and Literature Search Data 
  Average Ultimate Tensile Strength Results, 7075-T6 Clad
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Figure B7. PLCRS and Reference Data Metallic Al7075-T6 Clad Ultimate Tensile Strength Results. 
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PLCRS and Literature Search Data
   Average Yield Tensile Strength Results, 7075-T6 Clad
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Figure B8.  PLCRS and Reference Data Metallic Al7075-T6 Clad Yield Tensile Strength Results. 
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PLCRS and Literature Search Data
   Average Percentage of Elongation Results, 7075-T6 Clad
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Figure B9.  PLCRS and Reference Data Metallic Al7075-T6 Clad Elongation Results. 
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Reference Data for Tension Testing

Reference (3) - "Mechanical Behavoior of Al 2024 All0y Specimen to Paint Stripping by Laser Radiation
 and Plasma Ecthing"

UTS Std Dev YTS Std Dev %Elog Std Dev - Number of sample
Baseline Al 2024-T3Bare 70.05076 47.86077 17.68 5

TEA-CO2 laser Al 2024-T3Bare 68.8905 45.54025 16.4 5
CO2 laser Al 2024-T3Bare 68.74547 45.54025 13.1 5
YAG laser Al 2024-T3Bare 68.96302 46.84554 12.85 5

Excimer laser Al 2024-T3Bare 68.60044 46.48296 11.6 5
Plasma etching Al 2024-T3Bare 67.15011 47.9913 3.08 5

Reference (2) - "Evaluation of Envirostrip for De-painting Thin-Skinned Aluminum Alloys" 

UTS Std Dev YTS Std Dev %Elog Std Dev - Number of sample
Baseline Al 2024-T3Bare 72.83 0.1 53.94 0.24 16.93 0.44 4

Envirostrip Al 2024-T3Bare 72.19 0.25 52.67 0.14 18.06 0.49 4

Baseline Al 2024-T3Clad 66.91 0.38 50.48 0.39 16.70 1.00 4
Envirostrip Al 2024-T3Clad 65.93 0.25 48.97 0.09 16.94 0.78 4

Baseline Al 7075-T6Bare 85.41 0.37 79.32 2.23 12.33 0.75 4
Envirostrip Al 7075-T6Bare 83.65 0.29 76.06 0.31 12.55 0.26 4

Baseline Al 7075-T6Clad 78.28 0.4 69.68 1.11 13.95 0.64 4
Envirostrip Al 7075-T6Clad 76.38 0.09 68.03 0.11 13.69 0.54 4

Reference (1) - "Laser Paint Stripping"

UTS Std Dev YTS Std Dev %Elog Std Dev - Number of sample
Baseline Al 2024-T3Bare 64960 63590 16.3

64750 64400 16.7
65470 64390 17
65109 63520 16.4
65070 65030 11.6

Avg. 65071.8 64186 15.6
Std Dev. 262.6808 632.163 2.252776

CO2 Al 2024-T3Bare 66980 65260 15.6
65060 63450 16.1
64790 62990 17.1
67330 65580 16.3
65250 64210 18.6
64660 63360 16.3
64540 63290 15.5
66570 64480 16.2
67080 65560 16.2
67330 65580 16

Avg. 65959 64376 16.39
Std Dev. 1193.04 1059.929 0.890006
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PLCRS Smooth Data Fatigue Results, 7075-T6 Bare 
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Figure C1. PLCRS and Reference Data 7075-T6 Bare Smooth Fatigue Results. √ indicates a statistical difference 
at a 90% simultaneous confidence level. 
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PLCRS Notch Data Fatigue Results, 7075-T6 Bare
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Figure C2. PLCRS and Reference Data Metallic Al7075-T6 Bare Notch Fatigue Results. 
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PLCRS Smooth Data Fatigue Results, 7075-T6 Clad
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Figure C3. PLCRS and Reference Data Metallic Al7075-T6 Clad Smooth Fatigue Results. 
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PLCRS Notch Data Fatigue Results, 7075-T6 Clad 
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Figure C4. PLCRS and Reference Data Metallic Al7075-T6 Clad Notch Fatigue Results. 
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7075-T6 Bare Smooth Fatigue Data 

 
Reference (4)

Average N - Number of Samples
Control 83,588

97,772 90,680 4.957512 12

Chemical 57,671
81,641 69,656 4.842959 8

Reference (2)
Average Std Dev Average Std Dev

Control 48,937 17,662 4.689637 4.24704 10
Envirostrip 40,300 17,484 4.605305 4.242641 10  
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7075-T6 Clad Fatigue Data 
 
 

Smooth

Reference (5) Reference (2) Reference (4)
Average Std Dev Average Std Dev N - Number of Samples N - Number of Samples

Control 68,500 Control 106,900 13,762 5.028978 4.138682 10 Control 109,903
96,000 Blasted 93,852 14,361 4.972444 4.157185 10 133,147 121525 5.084666 12
98,500 87,667 4.942834

Chemical 103,928
PMB 78,000 124,872 114400 5.058426 8

56,700
53,900 62,867 4.79842

Notch

Reference (6)

Control (30 ksi) 20,614    
19,573    
20,639    
22,254    20,770    4.317436

Stripped (30 ksi) 17,811    
20,000    
18,134    
23,727    19,918    4.299246

Control (20 ksi) 91,787    
78,845    
78,900    
73,585    80,779    4.9073

Stripped (20 ksi) 82,389    
116,427  
79,536    

110,634  97,247    4.987874
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2024-T3 Clad Fatigue Data 
 
 

Smooth and Notch

Reference (5) Reference (2) Reference (4)
Cycles Std Dev Cycles Std Dev N - Number of Samples N - Number of Samples

Control 67,237 Control 100157 10494 5.000681 4.02094106 10 Control 112,854
74,111 Blast 66500 11281 4.822822 4.052347599 10 121,860 117357 5.069509 12

101,700
76,676 Chemical 82,601
83,929 104,007 93304 4.9699 8
94,228
87,327

100,758
77,394 Reference (6)
93,755 86,518 4.937104

39,929    
PMB 36,584 Control (30 ksi) 30,408    

67,527 27,608    
80,355 23,025    30,243    4.48062
77,450 24,666    

45 Stripped (30 ksi) 30,615    
27,665 44,508    
49,075 28,100    31,972    4.50477
72,499 126,649  
91,650 Control (20 ksi) 173,515  
61,220 56,407 4.751333 163,970  

147,424  152,890  5.18438
PMB 82,998 141,938  

76,923 Stripped (20 ksi) 168,236  
84,479 153,498  
69,337 143,788  151,865  5.18146
94,511
50,500
71,024
68,562
88,300
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PLCRS Fatigue Crack Growth Rate Results, 7075-T6 clad (0.025")
 Paint System #05 

(Mil-PRF-23377 primer/PRF-85285 topcoat) unless noted
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Figure D1. PLCRS Fatigue Crack Growth Rate Metallic Al7075-T6 Clad Results. 
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Figure D2. Metallic Al 7075-T6 Clad Fatigue Crack Growth Rate Statistical Analysis at ΔK of 6 and 14. 
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PLCRS Fatigue Crack Growth Rate Results, 7075-T6 bare (0.016")
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Figure D3. PLCRS Fatigue Crack Growth Rate Metallic Al7075-T6 Bare Results. 
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Figure D4. Metallic Al 7075-T6 Bare Fatigue Crack Growth Rate Statistical Analysis at ΔK of 6 and 14. 
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FLEXURAL STRENGTH RESULTS 
 



 

 

E-2

PLCRS  Flexural Strength Results
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Figure E1. PLCRS Flexural Strength Results. 

 



 

 

E-3

 
 

 

PLCRS and Reference Data   
 Flexural Strength Results,  Graphite/Epoxy Laminate 
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Figure E2. PLCRS and Reference Data Flexural Strength Results. 
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Reference Data for Flexural Strength

Reference (7)

Wet Abrasive Average Flexural Strength
Baseline - 140.4
Substrate - 156.3

Bicarbonate Average Flexural Strength
Baseline - 150.1
Substrate - 171.4

Abrasive Average Flexural Strength
Baseline - 143.7
Substrate - 146.4

Reference (5)

PMB
Number of Specimen Average Strength Std. Dev.

Baseline 7 161.78 6.87

One @ 38 8 157.15 17.74
One @ 38 6 146.67 13.37

Two @ 38 9 149.60 12.47

Four @ 38 10 158.49 15.39

One @ 60 8 153.91 14.62

Two @ 60 9 144.45 11.37

Four @ 60 7 142.68 9.70

Reference (9)

Flash lamp
Number of Specimen Average Strength Std. Dev.

Baseline 12 221.1 8.0
Substrate 12 210.2 8.0  
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